Vom Spiegel des Universums by Wolfgang Tschirk

Vom Spiegel des Universums by Wolfgang Tschirk

Autor:Wolfgang Tschirk
Die sprache: deu
Format: epub
ISBN: 9783662620663
Herausgeber: Springer Berlin Heidelberg


Kaum war man die unendlich kleinen Größen losgeworden, kam Abraham Robinson und führte sie wieder ein. In seiner Nichtstandard-Analysis von 1966 gibt es infinitesimale Zahlen: nicht null, aber kleiner als jede reelle Zahl, also unendlich klein wie Leibniz’ Differentiale. Mit ihrer Hilfe kann man hyperreelle Zahlen definieren. Eine hyperreelle Zahl besteht aus zwei Teilen, einem reellen Standardteil und einem infinitesimalen Nichtstandardteil, wobei die Rechenregeln der reellen Zahlen auch auf die hyperreellen übertragbar sind. Nun braucht man für die Ableitung einer Funktion keinen Grenzwert mehr: Man bildet einfach mit einem infinitesimalen ; der Quotient ist hyperreell, und sofern sein Standardteil endlich ist, gibt dieser die Steigung der Tangente an. Auch das Integral ist hier kein Grenzwert, sondern der Standardteil einer Summe über Rechteckflächen infinitesimaler Breite.

Neben den unendlich kleinen Zahlen gibt es in der Nichtstandard-Analysis auch unendlich große: infinite; solche, die größer sind als jede reelle Zahl. Spätestens hier kommen wir um die Frage nicht herum, was es heißt: „Es gibt“ diese Zahlen. Erinnern wir uns daran, dass man gegen Ende des neunzehnten Jahrhunderts die natürlichen Zahlen axiomatisch eingeführt hat. Sämtliche anderen Zahlen wurden aus ihnen gewonnen, und zwar durch schrittweise Konstruktion: erst die ganzen, dann die rationalen und schließlich die reellen. Von diesen führt nun ein weiterer Schritt zu den Zahlen der Nichtstandard-Analysis, die es im selben Sinne gibt wie ihre Vorgänger: Man kann ohne Widerspruch mit ihnen operieren. Allerdings muss man dazu auf das archimedische Axiom verzichten, demzufolge zu jeder beliebig großen Zahl eine noch größere natürliche Zahl existiert; denn dieses wird von den infiniten und indirekt auch von den infinitesimalen Zahlen verletzt. Das archimedische Axiom ist uns aber so in Fleisch und Blut übergegangen, dass wir es für eine Denknotwendigkeit halten, während es in Wirklichkeit eine bloße Festlegung ist. Reelle Zahlen sind archimedisch, hyperreelle eben nicht.

Wir haben die reellen Zahlen mit der Zahlengeraden identifiziert und dabei angenommen, jedem Punkt auf ihr entspreche eine reelle Zahl und umgekehrt. Man nennt dies das Standardmodell der Zahlengeraden. Ihr Nichtstandardmodell erhält man, wenn man jedem Punkt eine hyperreelle Zahl zuordnet und umgekehrt. Dabei kommen die reellen Zahlen wieder vor, denn eine reelle Zahl kann man ansehen als eine hyperreelle, deren Nichtstandardteil null ist. Doch zwischen ihnen liegen nun die anderen hyperreellen, und das zeigt, dass ein eindimensionales Kontinuum von Punkten nicht zwangsläufig genau die reellen Zahlen abbildet.

Mit Robinsons Theorie ist die Mathematik wieder zu Leibniz’ Ideen zurückgekehrt. Die Nichtstandard-Analysis bringt das, zufällig oder absichtlich, in einer besonderen Bezeichnung zum Ausdruck: Die infinitesimale Umgebung einer reellen Zahl heißt nämlich ihre „Monade“, nach dem zentralen Begriff der leibnizschen Welterklärung: der einfachen, ausdehnungslosen und unteilbaren Substanz, dem „lebendigen, immerwährenden Spiegel des Universums“.



Download



Haftungsausschluss:
Diese Site speichert keine Dateien auf ihrem Server. Wir indizieren und verlinken nur                                                  Inhalte von anderen Websites zur Verfügung gestellt. Wenden Sie sich an die Inhaltsanbieter, um etwaige urheberrechtlich geschützte Inhalte zu entfernen, und senden Sie uns eine E-Mail. Wir werden die entsprechenden Links oder Inhalte umgehend entfernen.